

Advancements in the industrial up-scaling of **MFC coating** at the paper machine wet-end

Specialty Papers Europe 2023 - Vienna, Austria

Tom Larson

Head of Business Development – Paper and Packaging FiberLean Technologies

September 2023

FiberLean® Technologies

Innovative by Nature.

OUR VISION

Accelerated transition to sustainable use of earth's resources through the power of materials science

OUR MISSION

Revolutionize product manufacturing through the development and implementation of innovative technologies based on biosourced, natural and recycled materials

	PRODUCTS OF YESTERDAY Petroleum products or paper combined with petroleum products	PRODUCTS OF TODAY Paper coated with petroleum derivatives (e.g., WBBC)	PRODUCTS OF TOMORROW Optimized paper coated with <i>less</i> petroleum derivatives	PRODUCTS OF THE DAY AFTER TOMORROW Functional paper with high bio-based content
Barrier Performance				
Strength				
Cost		0000		
Sustainability				
	 Poor recycling rate or not recyclable Low bio-content Environmentally harmful degradation 	 Recyclable but with difficulties 50-80% bio-content Not fully/quickly biodegradable WBBC = Water based barrier coatings 	 Recyclable 80-90% bio-content Biodegradable after long time periods Industrially compostable under specific conditions 	 Easily recyclable >90% bio-content Biodegradable after short time periods Home and industrial compostable

Cellulose is the most **ABUNDANT** and **RENEWABLE** natural polymer on **EARTH**.

Our process converts wood pulp fibres into small networks of fibrils, known as:

MICRO-FIBRILLATED
CELLULOSE
(MFC)

This unique **BIOMATERIAL** is used as a **HIGH-PERFORMANCE** additive across multiple product manufacturing industries, enabling users to:

- ✓ Improve properties and quality
- Reduce costs & gain efficiency
- Achieve sustainability goals
- Develop new products

MFC PRODUCT TECHNICAL DESCRIPTION

- Viscous suspension of MFC in water.
- Prepared at 1-2 wt.% solids.
- Exhibits a web-like network structure with high aspect ratio and surface area.
- Recyclable, biodegradable & compostable.
- Food contact safe.

FiberLean Grinding Technology:

The most efficient and effective way of making MFC at scale

Ultra-fine grinding to produce MFC

The unique FiberLean® process:

Creates interconnecting fibre

Networks

that are highly-fibrillated for

Strength

maximising MFC product

Performance

Our **robust grinding** process transforms fibres through **milling** with carefully **controlled intensity**, liberating an **optimal** "**micro-fibrillated**" **network** structure.

High-performance MFC produced onsite

- √ 100% mechanical, chemical-free process.
- Low energy consumption and low-cost operation.
- √ High-throughput continuous operation.
- ✓ **Low maintenance costs** and **high uptime** (>95% plant availability).
- ✓ Highly-automated modular plant design with online monitoring.
- ✓ **Optimal value creation** through a balanced relationship between cost and performance.

FiberLean® MFC for Paper & Packaging: A versatile additive with two ways to apply it

In the sheet... "Internal application"

MFC is mixed into the pulp stock to provide increased web bonding.

Scanning
Electron
Microscope
(SEM)
images of
paper cross
sections.

On the sheet... "Surface application"

FiberLean® MFC for Paper & Packaging:

A versatile additive with two ways to apply it

In the sheet... "Internal application"

MFC is mixed into the pulp stock to provide increased web bonding.

Scanning
Electron
Microscope
(SEM)
images of
paper cross
sections.

On the sheet... "Surface application"

FiberLean® MFC for Paper & Packaging:

Internal Application – MFC mixed into the pulp stock

IMPROVE PROPERTIES

- Increase web strength (wet & dry).
- Porosity control & coating hold-out.
- Improve stiffness.
- Improve fold-cracking resistance.
- Improve print quality.

REDUCE RAW MATERIAL COSTS

- Replace fibre with filler.
- Reduce Softwood consumption.
- Light weighting / dematerialization.
- Reduce chemical consumption.
- Reduce starch dependency.

GAIN EFFICIENCY

- Reduce web breaks.
- Improve retention.
- Increase machine speed.
- Reduce steam consumption.
- Reduce refining energy.

IMPROVE SUSTAINABILITY

- Improve quality of recycled feedstocks.
- Use more recycled material.
- MFC is: Recyclable, repulpable, biodegradable and compostable.

Containerboard

White Top Liner

Coated recycled board

Folding box board

Printing & writing paper

Specialty papers

Coated paper

Tissue

3D Moulded Fibre

FiberLean® MFC for Coated Specialty Papers:

Internal Application – MFC mixed into the pulp stock

IMPACT

- Reduced coating penetration into the sheet (improved hold-out)
- More effective film forming of coating materials applied to the sheet surface

OUTCOMES

- Improved coating performance (added value)
- Reduction of coating weight requirement (cost saving)

FiberLean® MFC for Paper & Packaging: A versatile additive with two ways to apply it

In the sheet... "Internal application"

MFC is mixed into the pulp stock to provide increased web bonding.

Scanning
Electron
Microscope
(SEM)
images of
paper cross
sections.

On the sheet... "Surface application"

FiberLean® on Top (FLoT):

A breakthrough coating technology to apply MFC onto paper and packaging products

White Top Liner

A new way to provide a white printable surface on brown boxes

- ✓ Low-cost layer comprising mostly minerals, with MFC as the only binder.
- ✓ Absolute minimal white pulp consumption to produce a WTL.
- ✓ Excellent smoothness and printing properties.

Image: 3-meter wide FiberLean on Top (FLoT) applicator operating on a paper machine running at 500 m/min

- MFC is coated during the paper making process using only the applicator and existing standard paper machine equipment.
- The technology has a low CapEx requirement vs traditional conversion, enabling conversion of existing production lines to new grades.

Barrier

Providing barrier properties to help reduce plastic and other harmful chemicals

- ✓ Barrier towards: Oil, grease, oxygen, aroma, solvents & mineral oils.
- ✓ Very smooth surface with high durability and strength.
- Sustainable: Natural & renewable material, high bio%, recyclable, biodegradable, compostable.
- Safe for food contact & environment.

FiberLean® MFC applied via FLoT

Provides many interesting properties for barrier specialties

KIT 12 oil solution being applied to paper surfaces.

- Oil & Grease resistance.
- ✓ Oxygen & Aroma barrier.
- ✓ Mineral oil barrier.
- ✓ Very smooth & closed surface.
- Excellent substrate for coatings.
- ✓ High-strength & durable layer.
- High bio-based content, sustainable packaging.
- MFC is not a water/moisture barrier.

Scanning Electron Microscope (SEM) Cross-section Imaging

- FiberLean® MFC remains on the surface, forming a fibril-film.
- The MFC layer has a very closed structure, preventing penetration of oil and permeability of air.
- The surface serves as an excellent substrate (primer) for subsequent coatings (i.e., topcoats to achieve moisture / water barrier).

Scanning Electron Microscope (SEM) Imaging

Laboratory Surface Application of MFC (woodfree base sheet)

- Minimum of 5-6 gsm MFC needed to seal surface.
- >8 gsm is usually needed to get barrier properties directly from the MFC.

- Even low MFC coat weights radically change the sheet surface.
- As low as 1 gsm could be a useful precoat.

Barrier Application Results

FiberLean® MFC applied via wet end coating

Pilot Prototype Paper 1: Oil & Grease / Mineral Oil Barrier

- 50 g/m² Base paper coated with only FiberLean® MFC.
- Between 8 to 12* g/m² MFC applied at the wet end using FiberLean® on Top technology.

Oil & GreaseKIT Rating = 12
23°C, 50% R.H. (0-12)

Mineral Oils (MOSH & MOAH)

HVTR = < 523°C, 50% R.H. (n-Heptane, g/m² d⁻¹)

Oxygen Barrier OTR = 40 to 100

23°C, 50% R.H. (cm³ d⁻¹ m⁻² bar¹)

High Strength & Durability

Fold / cracking endurance

Smooth & Closed Surface

Excellent precoat / primer layer for other top coats

>99% Bio-based

Mono-material packaging

Recyclable

With Paper & Cardboard

PTS-RH Method 021:202

Biodegradable

With no persistence

Certification in progress

*MFC coat weight required depends on substrate roughness/formation and desired properties.

Barrier Application Results

FiberLean® MFC applied via wet end coating

Pilot Prototype Paper 2: Prototype 1 + Moisture / Water Resistance

- 50 g/m² Base paper coated with 10 g/m² FiberLean[®] MFC using FiberLean[®] on Top technology.
- 1-stage coating step of a water-based barrier coating (6 q/m^2).

Oil & Grease KIT Rating = 1223°C, 50% R.H. (0-12)

Mineral Oils HVTR = < 5

23°C, 50% R.H. $(n-Heptane, g/m^2 d^{-1})$

Oxygen Barrier (MOSH & MOAH) OTR = 200 to 500 23°C, 50% R.H.

 $(cm^3 d^{-1} m^{-2} bar^1)$

High Strength & **Durability**

Fold / cracking endurance

Water Barrier

COBB 60 = < 0.823°C, 50% R.H. (g/m²)

> Functionality added by topcoat

Moisture Barrier

MVTR = < 723°C, 50% R.H. (g/m² d⁻¹)

Smooth & Closed Surface

Excellent precoat / primer layer from MFC

>90% Bio-based

Packaging complex Packaging complex

Recyclable

Biodegradable Packaging complex

Patented in-house design of the FLoT Applicator

1/10000 sec exposure photographs

Water, 500 m/min

20/80 MFC/CaCO₃ 500 m/min

- Specifically designed for application of optimized*
 MFC with jet speed similar to wire speed, i.e., at
 high-shear conditions. Gradual shear-thinning of
 MFC through the approach flow system and
 applicator with maintained laminar flow.
- FiberLean is committed to continued development of this technology and has multiple additional patents pending.
- FiberLean has partnered with a major coating equipment manufacturer to provide the engineering, fabrication and servicing of these applicators.

*MFC product optimization discussed further later.

Significant time, and money, spent on high-speed pilot and full-scale machines to understand how to do it

Variables:

- Base furnish
- Coat weight
- Coating solids
- Coating slurry approach flow system
- Applicator design
- Applicator position/geometry
- FiberLean MFC product
- Additives
- Machine settings and configurations

Over 10 trial weeks on slow pilot machines

Offline applicator operation

11 High-speed pilot trials:

- July -17
- November -17
- February -18
- March -18
- April -18
- December -18
- March -19
- December -19
- March -20
- December -21
- June -22

& multiple full-scale trials across several paper machines

FiberLean® MFC Products Optimized for Surface Application

Carefully selected properties based on years of process & application development

Tailored MFC Properties for Surface Application (FLoT)

- Barrier performance
- Strength / Durability
- Network bridging / film-forming
- Porosity control
- Surface hold-out
- Binding capability
- Viscosity & Drainage

- Avoidance of applicator blockages
- Coating uniformity / formation
- Process throughput to match peak demand
- Dose / Coat weight required
- Cost effectiveness

MFC Coat Weight vs. HVTR (23°C, 50% R.H.) Various MFC samples coated onto paper

- = Product recommended for barrier MFC surface application.
- ✓ Significantly lower coat weight required or higher performance

HVTR = Heptane Vapour Transmission Rate; is a barrier / permeation test method to evaluate the transmission rate of a volatile organic compound (n-Heptane), acting as a mineral oil simulant, through paper and plastic packaging materials.

Having the capability to run extensive mill trials is key to evaluation of MFC

MFC trial make-down unit, re-dispersing granulate FiberLean MFC to slurry for use on paper machine.

For wet-end coating there is also need for an approach flow system, ensuring MFC suspension is free of debris and air

Summary Key takeaways

- Cost-effective MFC is available today at scale via ultra-fine grinding.
- "Internal application" of MFC is well-established and is proven to enable paper makers to enhance the "Products of Today" by leveraging a host of value propositions; improving properties and net reducing costs.
- "Surface application" via wet end coating is pre-commercial and developing rapidly with full-scale paper machine trials.
 - Early adopters of the technology will have a unique first-to-market advantage to
 offer the "Products of Tomorrow" and "The Day After Tomorrow".
- Extensive machine trials to evaluate both "Internal" and "Surface" applications of MFC can be run in situ at paper mills globally.

Thank you.

E: info@fiberlean.com

W: www.fiberlean.com

FiberLean Technologies

FiberLean Technologies

9

@FiberLeanTech