

APRIL 22 – 26, 2023 • ATLANTA, GA Production of Microfibrillated Cellulose (MFC) using stirred media mills and applications in paper and board

> David Skuse, Lewis Taylor, Tom Larson Fiberlean Technologies

> > Presented by: David Skuse

Outline

- Introduction
- Stirred media mills
- Applications
- Regulatory clearances
- Running trials with low solids materials
- Conclusions
- Questions

Introduction

- MFC produced by mechanical treatment of cellulose
- Highly viscous suspension in water
- Typically 1-2% solids content
- Satellite production adjacent to final use location
- Produced using stirred media mills

Product families

- MFC from 100% virgin pulp
- MFC from recycled fibres
- MFC mineral composites
- NB Two of these families have no added minerals. MFC only

Coarse MFC

Medium MFC

Fine MFC

Stirred Media Mills

Stirred vessel containing small grinding media beads, which are agitated by an impeller

- Grinding media collide with each other, breaking and fibrillating fibres that are caught in the interstices
- High media surface area enhances fibrillation
- Highly tunable

<u>Advantages</u>

- No close tolerances or precision engineered components
- Robust proven technology
- Continuous single stage process
- Availability > 95%
- Low Capex and Opex
- High throughput
- Small footprint
- Modular easily-scalable design
- No additives or pre-treatments

Stirred Media Mills: Product characterisation

- Particle size and morphology analysis Microscopy, fibre analysers, laser diffraction
- Viscosity Over a range of shear conditions
- Permeability and drainage
- In-application testing
- Mechanical properties "FLT FiberLean Tensile" strength test Fast, accurate & precise,

correlation with in-application mechanical properties

Particle size alone is not sufficient to characterise MFC performance. A test of performance is also required

Stirred Media Mills: Product characterisation

Particle size alone is not sufficient to characterise MFC performance. A test of performance is also required

6 David Skuse, FiberLean Technologies, Production of microfibrillated cellulose (MFC) using stirred media mills and applications in paper and board - TAPPICon 2023 - Session PA1, Paper 1

Stirred Media Mills: Tunable behaviour (i)

Tunable nature of stirred media mills allow increased capability to decouple MFC size and fibrillation and improve MFC performance

Stirred Media Mills: Tunable behaviour (ii)

Tunable nature of stirred media mills allow increased capability to optimise MFC size and fibrillation and improve MFC performance

Stirred Media Mills: Optimisation for substrate

Tunable nature of stirred media mills allow process to be optimised for the substrate

Pilot-Scale Continuous data

Applications (i)

- Use of MFC generally allows:
 - Increased bonding in web-based

structures

- Increased viscosity, highly shear thinning
- Formation of barrier layers
- Reinforcement (of green polymers)

- Use of MFC in paper and board allows:
 - Generally improved mechanical

properties

- Lower porosity and hence improved coating hold out
- Many applications, including:
 - Wood free printing and writing paper
 - White top liner packaging
 - Newsprint and magazine papers
 - Barriers
 - New product development opportunities

Applications (ii)

Wood free printing and writing papers

MFC from virgin pulp MFC mineral composite

- NBSK, BSK, BHK, UBHK, sulphite
- GCC, PCC, kaolin, talc

140 120 52 g/m² 42 g/m² 14,5% filler 23.5% filler 100 80 White Top [%] 60 Base Layer 90 g/m² 40 20 0 Reference 2.5% MFC

- MFC addition to the top layer improves strength, enabling the filler content to be increased.
- Increased filler content improves the optical coverage of the dark base, enabling the top layer thickness to be reduced.
- The base layer can then be increased proportionately to maintain/improve overall WTL properties.
- This substitution of white top fibre reduces overall costs whilst maintaining critical properties.

Newsprint and magazine papers

• Use of MFC based on DIP fibre enables sheet strength to be maintained when increasing the filler content, reducing overall costs.

White top liner

Applications (iii)

Barriers applications

Cross-section Imaging: Scanning Electron Microscopy (SEM)

- Barrier properties of MFC: Oil & Grease, Oxygen, Aromas, Mineral Oils.
- Very smooth and closed surface for combining with additional functional coatings (e.g., To achieve water/moisture barrier).

MFC

- Virgin and recycle fibres
- BSK, BHK, UBHK

New product development directions: Wet end coating

MFC mineral composite

- Virgin and recycle fibres
- GCC (very high loading)

New product development directions: Very high filler loadings

Scanning electron micrographs of uncoated wood free sheets; 17% GCC filled sheet with no MFC (left, control) and 55% GCC filled sheet with 4.5% MFC fibrils (right)

MFC mineral compositeVirgin NBSK

GCC

Regulatory clearances

USA

EPA – existing substance under TSCA. Not subject to reporting under EPA nano rule

Food contact clearance through FDA (5wt.% fibrils in packaging), FCNs 1582 and 1887 Covers all ratios of mineral: MFC including mineral-free

Food coating FCN 2022

FDA GRAS – in progress, part of Vireo led consortium. For food use

Canada

Environment and climate change Canada – existing substance under CEPA

Health Canada opinion – "...we see no reason to object...to the use of FiberLean in food contact packaging, under conditions as described on the FDA website in the FCN 1582"

Covers all ratios of mineral: MFC including mineral-free

China

The National Health Commission of the People's Republic of China approved microfibrillated cellulose pulp (CAS 65996-61-4) as an additive in paper and paperboard used for contact with all types of food, subject to a maximum usage of 5% (based on the dry weight of fiber) and no specific migration level requirement

Covers all ratios of mineral: MFC including mineral-free

Germany

Acceptance confirmed for BfR XXXVI and XXXVI/2 at up to 5 wt.% fibrils when produced with minerals at between 50% and 83% mineral content Mineral-free application has been filed with BfR

Netherlands

Cellulose microfibres produced with calcium carbonate, kaolin and/or other permitted mineral fillers are included in Chapter 2 (Paper and board) of the Dutch commodities act regulation at up to 5wt.% fibrils

Running trials with low solids materials

Slurry

Production plant in the UK, 2000 dry metric tonnes pa of fibril capacity. Operational since Q4 2013: Slurry and press-cake product forms

Press cake

Conclusions

- MFC and mineral/ MFC composites are produced using cost-effective, robust stirred media mills and have proven full-scale availability
- MFC and Mineral/MFC composites can be produced using a wide range of virgin and recycle pulps
- The tunable nature of stirred media mills allows high quality MFC to be prepared from a wide range of pulps
- A range of regulatory clearances are in place
- MFC and mineral/ MFC composites are important additives for a wide range of paper and board applications

Thank you for your attention Questions?

Presented by: David Skuse Fiberlean Technologies david.skuse@fiberlean.com

